Information for Residents & Visitors of the City of Ventnor, New Jersey

City of Ventnor Consumer Confidence Report DRINKING WATER QUALITY REPORT

2023

City of Ventnor: www.ventnorcity.org

Ventnor City Hall 6201 Atlantic Avenue Ventnor City, NJ 08406 phone: 609.823.7935 fax: 609.822.1660 email: cityadmin@ventnorcity.org

VENTNOR WATER & SEWER UTILITY ANNUAL DRINKING WATER QUALITY REPORT FOR THE YEAR 2022

Este informe contiene informacion muy importante sobre su agua beber.

Tradūzcalo \bar{o} hable con alguien que lo entienda bien.

This report is prepared to inform you about the quality of water and services the Ventnor Water & Sewer Utility provides to you every day. Our goal is to provide you with a safe and dependable supply of drinking water. We are pleased to report that our drinking water is safe and meets all federal and state requirements.

If you have any questions regarding this report or your water utility, please contact Ernest Gratz, Superintendent at (609) 823-7935. We want our consumers to be informed about their drinking water and the water utility. For your information, public City Commission Meetings are held twice a month on the second and fourth Thursdays at 5:30 P.M. The meets are additionally available online via the Zoom platform. Both meetings are held in the Commission Chamber on the second floor of City Hall, 6201 Atlantic Avenue.

The Ventnor Water & Sewer Utility obtains its water from six wells drilled into the Kirkwood aquifer, a confined aquifer approximately eight hundred feet below the surface. The main plant at Cornwall & Winchester Avenues has four wells, it feeds a half million-gallon reservoir located below ground. We also operate two half million-gallon capacity water towers, each with their own well. For disinfecting purposes, gas chlorine is added to the water.

The Ventnor Water & Sewer Utility routinely monitors for contaminants in the drinking water according to Federal and State laws. The following tables indicate the results of our monitoring for the period of January 1st to December 31st 2022. The state requires us to monitor for certain contaminants every year, the concentrations of these contaminants are not expected to vary significantly from year to year. Some of the data, though representative of the water quality, is more than a year old.

Since 1995, New Jersey DEP has granted us a waiver for Synthetic Organic Compounds, (SOCs), and as such we do not test for these contaminants.

As water travels over the land or underground, it can pick up substances or contaminants such as microbial, inorganic and organic chemicals, and radioactive substances. All drinking water, including bottled drinking water, may be reasonably expected to contain some small amounts of contaminants and mineral content. The presence of contaminants does not necessarily indicate a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Ventnor's water supply comes from 800-foot sand filtered water on Absecon Island.

Contaminants that may be present in source water include:

Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

- Inorganic contaminants such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas projection, mining or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can also, come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, The State of New Jersey, Bureau of Safe Drinking Water and the Environment Protection Agency enforce drinking water-regulations which limit the concentrations of certain contaminants in water provided by public water systems.

Food and Drug Administration regulations establish limits for water contaminants in bottled water which must provide the same protection for public health. The limits imposed are similar to drinking water standards.

Nitrate: Nitrate in drinking water at levels above 10 ppm has a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome, Methemoglobinemia. Nitrate levels may rise quickly for short periods of time due to rainfall or agricultural activity. If you are caring for an infant, you should ask for advice from your health care provider.

Lead: If present, elevated levels of lead can cause serious health problems, especially pregnant women and young children. Lead in drinking water is primarily from materials and components associated with water service lines and home plumbing. Ventnor Water is responsible for providing high quality drinking water, it cannot control the variety of material used in plumbing components. Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community, as a result of materials used in your home plumbing. If you are concerned about elevated lead levels in

your home water, you may wish to have your water tested. To reduce your risk, after a period of non-use, flush your cold-water faucet for a period of 30 seconds to 2 minutes before using cold water for drinking or cooking. Additional information is available from the Safe Drinking Water Hotline (1-800-4264971) or at http://www.epa.gov/safewater/lead.

Call us at 1-609-823-7935 to find out how to get your water tested for lead. Testing is essential because you cannot see, taste, or smell lead in drinking water.

However, for those serviced by a lead water service line, flushing times may vary based on the length of the service line, and plumbing configuration in your home. If your home is set back further from the street a longer flushing time may be needed. To conserve water, other household water usage activities such as showering, washing clothes, and running the dishwasher are effective methods of washing flushing out water from the service line. To determine if you have a lead service line, contact Ventnor Water at (609)823.7935.

Lead monitoring is on a three-year schedule for the Ventnor Water System. Lead samples were collected in 2020. The Ventnor Water System water quality passed the 2020 stringent lead and copper standards. The water system will be monitored again in 2023, between June 1 & September 30. The results are included in the annual Consumer Confidence Report, (CCR). Please call (609)823.7935 if you would like the results. We are currently collecting samples sites for our 2023 regulatory Lead & Copper Testing. Call if you wish to participate. This is a no charge water sample collected by the Water Utility.

The state considers our water system to have three points of entry. For certain contaminants we are required to monitor each entry point as a separate system. As such, some results in the table will indicate system #1, #2 or #3. System #1 is the Main Plant; System #2 is the well/tower in Ventnor Heights and System #3 is the well/tower adjacent to the Lafayette Avenue School. During 2022, all monitoring was completed as required.

DEFINTIONS

In the following table you will find many terms and abbreviations which may not be familiar. To help you better understand these terms, we've provided the following definitions:

<u>Non-Detects (ND)</u> laboratory analysis indicates that the constituent is not present.

- <u>Parts per million</u> (ppm) or Milligrams per liter (mg/I) one part per million corresponds to one minute in two years or a single penny in \$10,000.
- Parts per billion (ppb) or Micrograms per liter one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

<u>Picocuries per liter</u> (pCiL) Picocuries per liter is a measure of the radioactivity in water.

- <u>Million Fibers per Liter</u> (MFL) -million fibers per liter is a measure of the presence of asbestos fibers that are longer than 10 micrometers.
- <u>Action Level</u> the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
- <u>Treatment Technique</u> (TT) A treatment technique is a required process intended to reduce the level of a contaminant in drinking water.
- <u>Maximum Contaminant Level</u> The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCL's are set as close to the MCLG's as feasible using the best available treatment technology.
- <u>Maximum Contaminant Level Goal</u> -The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLG's allow for a margin of safety.
- <u>Secondary Maximum Contaminant Level</u> (SMCL) Federal drinking water measurements for substances that do not have an impact on health. These reflect aesthetic qualities such as odor, taste or appearance. Secondary standards are recommendations, not mandates.
- <u>Maximum Residual Disinfectant Level (MRDL)</u>: The highest level of a disinfection allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

	VE	ENTNOR ⁻	TEST R	ESU	LTS		
Contaminant		olation Units of Y/N Measure	Test Date MC	I MCI	GLevel	Detected	Likely Source of Contamination
Contentinant	1					20100104	
Volatile Organic Compounds	- no co	ompounds detect	ted in 2020 i	nonitor	ing		
Trihalomethanes (THM's)	N	ppb	Annual Average	8 0	n/a	High 10.8	By-product of drinking water chlorination
2022 results			Range 17.3			4.92–27.5	
Haloacettic Acids (HAA's)	N	ppb	Annual Average	60	n/a	High 4.2	By-product of drinking water chlorination
2022 results			Range 9.5			5.1 - 12.3	
Inorganic Contaminants							
			0/20/2020	AL 15	_	1.2	Corrosion of household plumbing systems, erosion of natural
Lead No sites exceeded the Action Level for Lead (AL)	N	ppb	9/30/2020		0	1.2	deposits.
Copper	N	ppm	9/30/2020	AL 1.3	1.30	0.222	Corrosion of household plumbin systems, leaching from woo preservatives
No sites exceeded the Action Level for Copper (AL)							
Lead/Copper Samples collected June – September 2020	Next	Monitoring June – September 2023					
(AL) = Action Level		2023					
Nitrate							
System I	N	mg/l	2/22/2022	10	-	0.193	Erosion of natural deposits
System 2	N	mg/l	2/22/2022	10	-	0.209	
System 3	N	mg/l	2/22/2022	10	-	< 0.050	
Nitrite							
System I	N	mg/l	2/22/2022	10	-	<0.068	Erosion of natural deposits

System 2	N	mg/l	2/22/2022	10	-	<0.068	
System 3	N	mg/l	2/22/2022	10	-	<0.068	

diological							
Gross Alpha							
System 1	N	pCi/L	3/27/17	15	-	0.263	
System 2	N	pCi/L	4/19/17	15	-	0.115	Erosion of natural deposits
System 3	N	pCi/L	3/27/17	15	-	0.165	
Radium-228							
System 1	N	pCi/L	3/27/17	5	-	0.048	
System 2	N	pCi/L	4/19/17	5	-	0.115	Erosion of natural deposits
System 3	N	pCi/L	3/27/17	5	-	0.487	
sbestos							
Distribution System	N	MF/L	10/31/17	7	-	<0.062	Erosion of natural deposits

MCL's are set at very stringent levels. To understand the possible health effects described for many regulated constituents, a person would have to drink two liters of water at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

Some individuals may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised individuals with cancer undergoing chemotherapy, individuals who have undergone organ transplants, individuals with HIV/AIDS or other immune system disorders, the elderly and infants can be partially at risk from infections. These people should seek advice about drinking water from their healthcare providers.

EPA/CDC guidelines on appropriate means to lessen the effect of infection by Cryptosporidium and other microbiological contaminates are available from the State of New Jersey Safe Drinking Water Hotline. (1-800-426-4791)

7	Р	а	g	е
---	---	---	---	---

Measure Date	MCL mglL mglL	MCLG Detect/ 3/7/2022 3/7/2022	ed 0.3 0.05	Like	ly source of Conta	Erosion of natural deposits
<u>N</u>					0.0697	Erosion of natural deposits
<u>N</u>					0.0697	Erosion of natural deposits
<u>N</u>					0.0697	Erosion of natural deposits
<u>N</u>					0.0697	Erosion of natural deposits
<u>N</u>	mglL	3/7/2022	<u>0.05</u>		0.0097	
<u>N</u>	mgiL	3/7/2022	<u>0.05</u>			
<u>N</u>	mglL	3/7/2022	<u>0.05</u>			
				-	< 0.00792	Erosion of natural deposits
	ma/l	2/22/2022	250			
	<u>mg/L</u>	2/22/2022	<u>250</u>	-	10.0	
N	<u>mgIL</u>	2/22/2022	<u>250</u>	-	10.0	Erosion of natural deposits
<u>N</u>	<u>mg/L</u>	2/22/2022	<u>250</u>	-	10.8	
N	ma/l	2/22/2022	0.1	-	<0.004	
				Ė		Eracion of natural demosite
						Erosion of natural deposits
<u>N</u>	<u>mg/L</u>	2/22/2022	<u>0.1</u>		<0.004	
N	ma/l	2/22/2022	0.1	-	<0.001	
						Erosion of natural deposits
						LIDSION OF HARUFAL DEPOSITS
<u>N</u>	<u>mg/L</u>	2/22/2022	<u>0.1</u>		<0.001	
N	ma/l	2/22/2022	4	-	0 107	
						Fragion of natural donasite
						Erosion of natural deposits
<u>IN</u>	<u>nig/L</u>	212212022	4	-	0.112	
		_		-		
<u>N</u>	<u>mg/L</u>	2/22/2022	<u>50</u>	-	24.3	
N	<u>mgIL</u>	2/22/2022	<u>50</u>	-	23.9	Erosion of natural deposits
N	<u>mg/L</u>	2/22/2022	<u>50</u>	-	19.6	
<u>N</u>	mg/L	2/22/2022	NA	-	30.8	
						Erosion of natural deposits
		N mg/L N mg/L	N mg/L 2/22/2022 N mg/	N mg/L 2/22/2022 259 N mg/L 2/22/2022 0.1 N mg/L 2/22/2022 4 N mg/L 2/22/2022 4 N mg/L 2/22/2022 50 N mg/L 2/22/2022 50 N mg/L 2/22/2022 50 N mg/L 2/22/2022 50	N mg/L 2/22/2022 250 . N mg/L 2/22/2022 250 . N mg/L 2/22/2022 0.1 .	N mg/L 2/22/2022 250 - 10.8 N mg/L 2/22/2022 0.1 - N mg/L 2/22/2022 0.1 - <0.004

System 3	<u>N</u>	mg/L	2/22/2022	<u>NA</u>	-	30.0	
Alkalinity							
System 1	<u>N</u>	<u>mg/L</u>	2/2/2/2022	<u>NA</u>	-	72.0	
System 2	<u>N</u>	<u>mgIL</u>	2/2/2/2022	<u>NA</u>	-	70.0	Erosion of natural deposits
System 3	N	<u>mg/L</u>	2/22/2022	<u>NA</u>	-	62.0	
<u>Hardness</u>							
System 1	<u>N</u>	mg/L	2/22/2022	<u>250</u>	-	40.0	
System 2	N	<u>mgIL</u>	2/22/2022	<u>250</u>	-	39.0	Erosion of natural deposits
System 3	N	<u>mg/L</u>	2/22/2022	<u>250</u>	-	39.0	
Chlorides							
System 1	<u>N</u>	<u>mg/L</u>	2/22/2022	<u>250</u>	-	8.0	
System 2	<u>N</u>	<u>mgIL</u>	2/22/2022	<u>250</u>	-	8.0	Erosion of natural deposits
System 3	N	<u>mg/L</u>	2/2/2/2022	<u>250</u>	-	6.0	
Zinc							
System 1	N	ma/l	2/22/2022	5		0.0005	
		mg/L	2/22/2022	5	-	0.0307	
System 2	<u>N</u>	<u>mgIL</u>	2/22/2022	5	-	< 0.030	Erosion of natural deposits
System 3	N	<u>mg/L</u>	2/2/2/2022	<u>5</u>	-	< 0.030	

Special Considerations Regarding Children, Pregnant Women, Nursing Mothers, and others.

Children may receive a slightly higher amount of a contaminant present in the water than do adults, on a body weight basis, because they may drink a greater amount of water per pound of body weight than do adults. For this reason, reporductive or development effects are used for calculating a drinking water standard if these effects occur at lower levels than other health effects of concern. If there is insufficient toxicity information for a chemical (for example, lack of data on reproductive or developmental effects), an extra uncertainty factor may be incorporated into the calculation of the drinking water standard, thus making the standard more stringent, to account for additional uncertainties regarding these effects. In the cases of lead and nitrite, effects on infants and children are the health end points upon which these standards are based.

Contaminant ICMR4 results are in micrograms & r romide	Violation Y/N nilligrams pe	Measure	Date	MCL	MCLG	Detected	
	mingrams pe	n litan		MICE	NICLO	Delected	Likely source of Contaminants
romide		r mer.					
<u>System 1</u>	<u>N</u>	<u>Ug/L</u>	9/20/2020			NS	
System 2	N	<u>Ug/L</u>	9/20/2020			37.5	Erosion of natural deposits
System 3	N	<u>Ug/L</u>	9/20/2020			< 20.0	
IS = No sample collected, not equired.							
OC Total Organic Carbon							
System 1	N	<u>Ug/L</u>	9/20/2020			NO	
		Ug/L				NS	By product of dripking water
System 2	N		9/20/2020			<1000	By-product of drinking water chlorination
System 3	N	<u>Ug/L</u>	9/20/2020			<1000	
US = No sample collected, not equired.							
langanese							
System 1	N	mg/L	9/20/2020	0.05		0.0059	
System 2	N	<u>mg/L</u>	9/20/2020	0.05			Erosion of natural deposits
System 3	<u>N</u>	<u>mg/L</u>	9/20/2020	0.05		0.0100	
ermanium							
System 1	<u>N</u>	<u>Ug/L</u>	9/20/2020			< 0.30	
System 2	<u>N</u>	Ug/L	9/20/2020			< 0.30	Erosion of natural deposits
System 3	<u>N</u>	<u>Ug/L</u>	9/20/2020			< 0.30	
Perfluorinated Compounds							
erfluoroheptanoic Acid (PFHpA)							
System 1	<u>N</u>	mg/L	2021	NA	-	< 0.00002	Erosion of natural deposits
System 2	N	mg/L	2021	NA	-	< 0.00002	Run Off from Airports, Landfills
System 3	N	<u>mg/L</u>	2021	<u>NA</u>	-	< 0.00002	Leachate and wastewater effluer

Perfluorohexanesulfonic Acid (PFHxS)							
Fernuoronexanesunomic Acid (FTTIXS)							
System 1	N	mg/L	2021	NA	-	< 0.00002	Erosion of natural deposits
System 2	N	mgIL	2021	NA	-	< 0.00002	Run Off from Airports, Landfills
System 3	Ν	mg/L	2021	NA	-	< 0.00002	Leachate and wastewater effluent
Perfluorooctanoic Acid (PFOA)							
Output 1	NI		0004	NIA		< 0.00000	Furning of a structure site
System 1	<u>N</u>	<u>mg/L</u>	2021	<u>NA</u>	-		Erosion of natural deposits
System 2	N	<u>mgIL</u>	2021	<u>NA</u>	-		Run Off from Airports, Landfills
System 3	<u>N</u>	mg/L	2021	<u>NA</u>	-	< 0.00002	Leachate and wastewater effluent
Perfluorooctanesulfonic Acid (PFOS)							
System 1	N	mg/L	2022	NA	-	< 0.00002	Erosion of natural deposits
System 2	N	mgIL	2022	NA	-	< 0.00002	Run Off from Airports, Landfills
System 3	N	mg/L	2022	2020	-	< 0.00002	Leachate and wastewater effluent
	_						

All Results in ugL	<u>Main Plant</u>	Well 8R	<u>Well 10</u>
UCMR4 Semi-Volatiles			
Butylated Hydroxyanisole	< 0.029	< 0.029	< 0.029
Quinoline	< 0.020	< 0.020	< 0.020
O-Toluidine	< 0.0068	< 0.0068	< 0.0068
Alpha-BHC	< 0.010	< 0.010	< 0.010
Chloropyrifos	< 0.030	< 0.030	< 0.030
Dimethipin	< 0.20	< 0.20	< 0.20
Ethoprop	< 0.030	< 0.030	< 0.030
Oxyfluorfen	< 0.050	< 0.030	< 0.030
Permethrin	< 0.040	< 0.040	< 0.040
Profenofos	< 0.30	< 0.30	< 0.30
Tebuconazole	< 0.20	< 0.20	< 0.20
Tribufos	< 0.070	< 0.070	< 0.070
UCMR4 Alcohols			
n-Butanol	<2.0	<2.0	<2.0
2-Methoxyethanol	< 0.40	< 0.40	< 0.40
2-Propen-1- ol	< 0.50	< 0.50	< 0.50

All Results in ugL	Distribution	Distribution	Distribution	Distribution
	Site 1	Site 2	Site 3	Site 4
UCMR4				
Haloacetic Acids				
Bromochloroacetic	1.2	0.50	0.79	1.3
Acid				
Bromodichloroacetic	1.5	1.5	1.8	1.6
Acid				
Chlorodibromoacetic	0.35	0.51	0.53	0.35
Acid				
Dibromoacetic Acid	0.36	<3.0	<3.0	0.36
Dichloroacetic Acid	3.0	1.4	0.20	3.8
Monobromoacetic Acid	<3.0	<3.0	<3.0	<3.0
Monochloroacetic Acid	<2.0	<2.0	<2.0	<2.0
Tribromoacetic Acid	<2.0	<2.0	<2.0	<2.0
Trichloroacetic Acid	4.5	5.2	5.1	5.2